
Using Hessians as a Regularization Technique

Adel Rahimi, Tetiana Kodliuk, and Othman Benchekroun

Dathena Science Pte. Ltd., #07-02, 1 George St., Singapore, 049145
{adel.rahimi, tania.kodliuk, othman.benchekroun}@dathena.io

http://www.dathena.io

Abstract. In this paper we present a novel, yet simple, method to regu-
larize the optimization of neural networks using second order derivatives.
In the proposed method, we calculate the Hessians of the last n layers of
a neural network, then re-initialize the top k percent using the absolute
value. This method has shown an increase in our efficiency to reach a
better loss function minimum. The results show that this method of-
fers a significant improvement over the baseline and helps the optimizer
converge faster.

1 Introduction

Neural Networks are heavily dependent on derivatives as a means of optimization
given that they are differentiable end to end. For example, Gradient Descent [1]
and its variants [2] [3] [4] minimize the network’s loss function, J(θ), through its
first-order partial derivatives. These derivatives, which are stored in the Jacobian
matrix, represent the rates of the change in J(θ) with respect to each of the
network’s parameters. Still, gradient descent can have some difficulty optimizing
these parameters only through the loss function’s first-order derivatives as some
of them can be far from their optimum.

Avoiding such issues can be done by computing the partial derivatives of
the Jacobian matrix. These derivatives give us an understanding of the rate at
which the gradient itself is changing, which is really useful when dealing with
multiple parameters, especially when updating them is expensive. This gradient
of gradients, i.e. J(θ)’s second-order derivatives, is stored in the Hessian matrix
as the gradient of the gradients. The Hessian is formulated in equation 1.

H(f(x)) = J(∇f(x))T (1)

As explained above, the Hessian matrix is based on the Jacobian’s partial
derivatives with respect to each network parameter. This calculation is shown in
equation 2.

H(f(x)) =
∂J

∂x1
, · · · , ∂J

∂xn
(2)

http://www.dathena.io


2 A. Rahimi et al.

As can be seen in equation 2, the dimensions of the Hessian matrix can be
quite large, requiring θ(n2) memory to store it. As most of the modern neural
network architectures have millions of parameters, storing all of this data can
be tremendously hard, thus limiting the use of second-order derivatives when
training neural networks.

2 Proposed Method

To solve the limitations introduced in the first part of this paper, we propose a
simple method to find and re-initialize weights that are far from their optimal
point. While some alternative methods only compute estimates as a way of
overcoming the computation and storage challenges posed by Hessians, they are
not accurate as they are entirely based on value approximations.

Instead, we propose calculating the Hessians solely for the last n layers in the
neural network as these last layers have an immediate effect on the task at hand.
Large hessian values for the n layers are the indicators of an extreme slope, and
therefore of high fluctuations in the gradient. The parameters corresponding to
these large values are far from their optimal weight, and subsequently will not
have any impact in the network.

The training process with the proposed method is as follows:

for Epoch in Training:
Forward pass
Calculate loss
Update weights using optimizer
for n last layers:

Calculate Hessian matrix
Get absolute value of each element
Sum/Average alongside dimensions
Get the top Hessian magnitudes (absolute values)
Re-initialize weights

Weight re-initialization can be defined by users, for instance by setting
all weights to 0, by using the random uniform distribution, or by using the
Xavier initialization [5]. Moreover, we can either re-initialize a whole unit —
corresponding to a column of weights — or a single weight.

The experiments ran on the test data allows us to conclude that summing and
averaging the hessian values does not make any difference as use absolute values;
therefore, either aggregation method can be used depending on the network’s
architecture and the task at hand.

3 Experiment



Using Hessians as a Regularization Technique 3

To evaluate the proposed method, we construct a classifier on the MNIST dataset
[6] with 4 hidden layers, each with a ReLU activation function. The number of
hidden units per layer are respectively: 1000, 1000, 500, and 200. We then follow
the algorithm presented above to get the Hessian matrix (which was averaged
on the additional dimensions) and re-initialize the top k percent of the weights.
To analyze the effects of k on the results, we tried different values on our data —
namely k = 10, 20, 30.

4 Results

Experiments have shown that the proposed method significantly improves the
convergence time and overall accuracy in comparison to normal training. Using
a small k, k = 10 in our case, will bring less divergence between the normal
training and the proposed method. Figure 1 shows the accuracy of our method in
comparison to the baseline model, which was trained without any regularization.
Our model reached a higher accuracy and has a bigger area below the curve,
meaning our model reaches a higher accuracy in less epochs. Setting a larger k
— with k = 20 for example — will divert the network as shown in figure 2 (left
plot). The difference between the plots is smaller than the previous results, i.e.
for k = 10. Finally, using a very high k (k = 30) will make the training process
unstable, and the network will likely perform even worse, as shown in the figure
2 (right plot).

Fig. 1. Comparison of accuracy between a normal training and our proposed method
with k value of 10.



4 A. Rahimi et al.

Fig. 2. Comparison of accuracy between anormal training and our proposed method
with different k values (for k = 20 and k = 30).

5 Conclusion

Using the proposed method, calculating the Hessians of the last n layers of the
network to re-initialize the top k percent, we can speed up the convergence
of our training and tune the network’s parameters that are hard to optimize.
This method is more trustworthy than the alternative methods presented as
it uses exact Hessians instead of simple estimations. Moreover, using only the
last n layers in the network makes it less costly than conventional methods that
use Hessians for the whole network. In the end, this method can be used as a
simplified robust method for Neural Network regularization.

References

1. David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533–536, 1986.

2. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

3. Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26–31, 2012.

4. Herbert Robbins and Sutton Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

5. Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256, 2010.

6. Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.


	Using Hessians as a Regularization Technique

